China high quality Auto Air Compressor Test Machine, Control Valve Tester air compressor parts

Product Description

Compressor Evaluation Test Machine (CETM), this machine can test all auto air condition compressor in the market.

100% Made In USA.

One compressor 1 minute test.

20 days production time.

Shipped directly from Dexas, USA.

ZheJiang CHINAMFG is the Exclusively Authorized Dealer for this TDS CETM.

If you’re interested in it, please contact me  .  I will send you more detail information.

Installation of auto compressor and contral volve to the machine: 

Backside of the machine:

1.  Flow Control Adjustment
      – 12 / 24 VDC
      – Nitrogen / Air Supply In
      – Dump
2. Computer Interface

Automatic Ttight the Pulley Belt by Click One Button:

Reading and record the pressures change inside of compressor:

The A/C Compressor Evaluation Test Machine (CETM) is designed to evaluate compressors without the operator needing to be familiar with the design and functionality of compressors. 2017 updated CETM machine has been manufactured for compressor manufacturers and remanufacturers with more automation and capability. The test imitates the loads that would be put on a compressor in an actual vehicle air conditioning system. 
The CETM requires a computer loaded with the TDS Compressor Evaluation Software (TCES). 
A list of compressor models is included in the software for convenience, but it is possible to test any compressor with a given pulley diameter and displacement per revolution. It is not necessary to know if the compressor is a fixed or variable model…the machine can determine the difference and run the correct test for either type. 

Quick Start 
The CETM is easy to use. Mount the compressor on the universal bracket. Align the bracket with the pulley and ensure the belt is straight. The compressor should be oiled and any excess oil drained from the compressor. Ensure that the hoses are properly connected. It is not required to have a measurement of the crank case pressure but it is beneficial for diagnostics. 
Start the program and ensure the machine is communicating with the computer. This is confirmed by the status color on the DL405 PLC Communications panel changing from red to green. 
The software consists of 3 (3) screens: 
Variable Animation Screen -This screen gives a look into the interior of a generic variable displacement compressor. When the compressor animation ontheleft is active it signifies the compressor is running at minimum displacement. The compressor animation on the right is active when the compressor is running at full displacement. The input values at the bottom of the screen show the pressure inputs in real time. 

Setup Screen The calibration of the inputs is shown on this screen. These are factory set for each machine and should not be changed. The test time is also set at the factory. The drive motor on the CETM can run CHINAMFG or backward. Most compressors will run forward. 

The easiest way to run a test is to use the drop down list of compressor types listed in the “Select Compressor Type” field to select a compressor model that best represents the compressor being tested. Select the model type from the list and click on the “OK” button.  
It is possible to create your own list that will automatically populate the report page or printout. Use the text file supplied by TDS and modify it to create your own text file. This file is named TheList.txt and is located in the C:/TDS/ directory. 
Open this list in a text editor such as Notepad and you will be able add or remove compressor models. Make sure to keep the same format and the last line of the file MUST be “None,0,0,0,0”. 
Below is a sample of the required format: 
As an example the first line could be a 10PA20 compressor. The line would read: 
Note: The displacement per revolution is multipliedby10 if it is a fixed displacement compressor !
When the Custom List is loaded the list supplied with the machine will be temporarily unavailable until the program is stopped and restarted. The Custom List is added by clicking on the command button located next to the drop down list. 
Performance Report Screen -After selecting the compressor type you must go to the Performance Report screen to enter the compressor clutch diameter. This measurement is in millimeters. 
Once this is done you need to ensure the compressor is properly aligned. This is accomplished by moving the universal test bracket. 
Press the start button. 
Once the test is complete press the print button on the Setup screen. This will print the test report and save the data to disk. 

Theory of Operation 
A car air conditioning compressor is essentially a pump designed to move a gas through a closed system. There are many types of compressors and they come in many sizes. For the CETM to test many types of compressors the system has to be programmable so that the test dynamics for all models produce similar results within a specified range. This is accomplished by entering the displacement per revolution and the pulley diameter in the fields at the bottom of the Performance Report screen. Using the data from these fields a calculation is performed and the drive motor speed is changed to compensate for the size of the compressor. 
As noted earlier, the test imitates the loads that would be put on a compressor in an actual vehicle air conditioning system. When the test is started current is sent to an air pressure transducer that adjusts the suction pressure to approximately 3 bar. This is well above the pressure which would result in a freezing evaporator and is also high enough to simulate a medium to high heat load on an evaporator. If the compressor is a variable displacement compressor the internal mechanical control valve should have been set at the factory to result in a crankcase pressure equal to the suction pressure. 
The suction pressure is then adjusted down to a pressure that represents a low heat load or a freezing evaporator temperature. If the compressor is a variable compressor the discharge pressure should drop all the way down to unload the compressor. The suction pressure is then increased back to the high load condition. The discharge pressure should go up again. If it is a fixed displacement compressor the discharge pressure will drop proportionally to the suction pressure. 
The discharge pressure is increased by putting a restriction in the discharge line. For this test the restriction is an adjustable orifice inside a metering valve. The pressure drop across an orifice is directly proportional to the mass flow rate. Therefore, when the compressor drops to minimum displacement the mass flow rate drops. When the machine is shipped the metering valve is set to fix the orifice size. This is done to set the maximum discharge pressure desired. All compressors should reach approximately the same maximum pressure at their maximum output. This maximum pressure can be adjusted with the metering valve. It is recommended that no changes be made to this valve. 
Note: If you adjust this valve it may be necessary to adjust the “Peak” setting located at the bottom right corner of the Performance Report screen. 
The “Peak” setting is the maximum pressure differential a good base line compressor will achieve. If this is set too low poorly performing compressor will pass, and if it is set too high good compressors will fail. This setting is extremely important and great care should be taken before it is adjusted. 
The CETM has a frequency inverter to adjust the speed of the drive motor. This inverter also sends information to the computer on the amount of power being used during the test. Excessive power can result in poor durability of the drive motor. 
The CETM has 2 methods for reviewing the results of the test.

1. The first method is the review of the indicators for “Flow Result” and “Control Valve” located on the “Performance Report screen. These give an estimate for the operator who is not familiar with how a compressor should perform. 
The “Flow Result” shows an evaluation of the flow performance of the compressor. This is determined by pressure thresholds. As mentioned previously the mass flow rate is proportional to the pressure drop across an orifice. If the higher discharge pressures are not obtained the flow will not be optimized. The settings showing a drop in compressor performance are representative of 10% drops in the pressure generated by the compressor. “Good” will be 10% lower than “Excellent”, “Acceptable” will be 20% lower than “Excellent”, and so on. It does not necessarily translate to the temperature of the air entering the passenger compartment of the vehicle. It is instead representative of the compressors performance. A pressure drop of 10% may only reflect a small amount of temperature change of the air that the passengers may not notice. 
The “Control Valve” evaluation isa little more complex and is broken down as follows: 
Full Function – This is when the compressor drops to a relatively low suction pressure as the compressor drops to minimum displacement. 
Part Function – The evaluation will give this reading when the discharge pressure falls lower but not to minimum. It means the compressor will lower the displacement amount but not completely. This can result in the load on the engine not reducing when the maximum discharge pressure of the compressor is not needed. Although the drivability of the car may not be affected this does violate the design intent of the variable compressor. 
Poor Function – This can only happen if the crankcase pressure detects that the internal mechanical control valve is working but could not detect an acceptable drop in the compressor performance. It means that there may not be enough flow through the control valve or the compressor is bypassing gas faster than the flow through the valve.  

None Detected This occurs when no crankcase pressure is detected or the crankcase never rises above the suction pressure. This may happen if the internal control valve is not functioning at all or the compressor is a fixed displacement model. 
Does Not Have This is the reading when a fixed displacement compressor model is selected. 
The internal mechanical control valve check is skipped. 
2. The second method is for operators that are more experienced with compressors or who are looking to get more information than the indicators provide. Using the graphical fields located lower on the “Performance Report” screen, the pressure curves and power draw of the compressor can be evaluated. The data is also saved to the computer hard disk, and can be imported into a spreadsheet such as Excell. 
Test Machine Specifications 
Machine Type…………………..Automatic PLC controlled variable and fixed displacement compressor evaluation test machine and computer loaded with TDS Compressor Evaluation Software (TCES) (monitor and printer not provided) 
Compressor Drive……………….Clutch belt drive to accommodate multi-groove and V-belt pulleys 
Motor……………………………………….Five horsepower premium efficiency inverter rated 
Speed………………………………………Variable speed motor controller – 0 to 1750 rmp 
Voltage……………………………………Dependent on available 3 phase electrical power available at the installation ocation 
Low Side Monitor………………..2.5 inch 0 to 160 CHINAMFG liquid filled gauge & 0 to 100 CHINAMFG pressure transducer 
High Side Monitor………………2.5 inch 0 to 300 CHINAMFG liquid filled gauge & 0 to 500 CHINAMFG pressure transducer 
Sump Monitor……………………..2.5 inch 0 to 160 CHINAMFG liquid filled gauge & 0 to 100 CHINAMFG pressure 
Compressor Mounting……..Universal bracket 
Belts Provided………………………One multi-groove serpentine belt and 1 V-belt 
Drive Belt Tentioning………..Air cylinder tensioned idler pulley 
Test Capabilities…………………..Fixed displacement and variable displacement with printed test report 
Dimensions…………………………..24 inches wide x 32 inches high x 30 inches deep 
Weight……………………………………Approximately 250 lbs 
Paint………………………………………..Polane T Plus Polyurethane Enamel
Machine Color……………………..Nitro Blue 
Made in USA
Safety Features 
Safety Guard with Interlock…………..Motor cannot operate without safety guard closed and will stop if the guard is opened 
Emergency Stop Button…………………….Immediately shuts down all operations when pushed 
ZheJiang CHINAMFG Mechanical Parts Co.,Ltd , the Exclusively Authorized Dealer for  TDS  CETM (A/C Compressor Evaluation Test Machine ) 

Classification: for All Capacities
Job Classification: for Reciprocating & Rotary Type
Transmission Power: Turbine,Internal-Combustion Engine, Pneumatic, Dyn
Cooling Method: for Both Air-Cooled and Water-Cooled
Cylinder Arrangement Mode: Symmetrical Balance
Cylinder Stage: Suitable for All Stages
US$ 1/Piece
1 Piece(Min.Order)

Request Sample



air compressor

How are air compressors utilized in pharmaceutical manufacturing?

Air compressors play a crucial role in pharmaceutical manufacturing, where they are utilized for various critical applications. The pharmaceutical industry requires a reliable source of clean and compressed air to ensure the safety, efficiency, and quality of its processes. Here’s an overview of how air compressors are utilized in pharmaceutical manufacturing:

1. Manufacturing Processes:

Air compressors are used in numerous manufacturing processes within the pharmaceutical industry. Compressed air is employed for tasks such as mixing and blending of ingredients, granulation, tablet compression, coating, and encapsulation of pharmaceutical products. The controlled delivery of compressed air facilitates precise and consistent manufacturing processes, ensuring the production of high-quality pharmaceuticals.

2. Instrumentation and Control Systems:

Pharmaceutical manufacturing facilities rely on compressed air for powering instrumentation and control systems. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control temperature and pressure, and automate various processes. The clean and dry nature of compressed air makes it ideal for maintaining the integrity and accuracy of these critical control mechanisms.

3. Packaging and Filling:

Air compressors are employed in pharmaceutical packaging and filling processes. Compressed air is used to power machinery and equipment for bottle cleaning, labeling, capping, and sealing of pharmaceutical products. Compressed air provides the necessary force and precision for efficient and reliable packaging, ensuring product safety and compliance.

4. Cleanroom Environments:

Pharmaceutical manufacturing often takes place in controlled cleanroom environments to prevent contamination and maintain product quality. Air compressors are used to supply clean and filtered compressed air to these cleanrooms, ensuring a controlled and sterile environment for the production of pharmaceuticals. Compressed air is also utilized in cleanroom air showers and air curtains for personnel and material decontamination.

5. Laboratory Applications:

In pharmaceutical laboratories, air compressors are utilized for various applications. Compressed air is used in laboratory instruments, such as gas chromatographs, mass spectrometers, and other analytical equipment. It is also employed in clean air cabinets, fume hoods, and laminar flow benches, providing a controlled and clean environment for testing, analysis, and research.

6. HVAC Systems:

Air compressors are involved in heating, ventilation, and air conditioning (HVAC) systems in pharmaceutical manufacturing facilities. Compressed air powers the operation of HVAC controls, dampers, actuators, and air handling units, ensuring proper air circulation, temperature control, and environmental conditions in various manufacturing areas.

By utilizing air compressors in pharmaceutical manufacturing, the industry can maintain strict quality standards, enhance operational efficiency, and ensure the safety and efficacy of pharmaceutical products.

air compressor

How does the horsepower of an air compressor affect its capabilities?

The horsepower of an air compressor is a crucial factor that directly impacts its capabilities and performance. Here’s a closer look at how the horsepower rating affects an air compressor:

Power Output:

The horsepower rating of an air compressor indicates its power output or the rate at which it can perform work. Generally, a higher horsepower rating translates to a greater power output, allowing the air compressor to deliver more compressed air per unit of time. This increased power output enables the compressor to operate pneumatic tools and equipment that require higher air pressure or greater airflow.

Air Pressure:

The horsepower of an air compressor is directly related to the air pressure it can generate. Air compressors with higher horsepower ratings have the capacity to produce higher air pressures. This is particularly important when operating tools or machinery that require specific air pressure levels to function optimally. For example, heavy-duty pneumatic tools like jackhammers or impact wrenches may require higher air pressure to deliver the necessary force.

Air Volume:

In addition to air pressure, the horsepower of an air compressor also affects the air volume or airflow it can provide. Higher horsepower compressors can deliver greater volumes of compressed air, measured in cubic feet per minute (CFM). This increased airflow is beneficial when using pneumatic tools that require a continuous supply of compressed air, such as paint sprayers or sandblasters.

Duty Cycle:

The horsepower rating of an air compressor can also influence its duty cycle. The duty cycle refers to the amount of time an air compressor can operate continuously before it needs to rest and cool down. Higher horsepower compressors often have larger and more robust components, allowing them to handle heavier workloads and operate for longer periods without overheating. This is particularly important in demanding applications where continuous and uninterrupted operation is required.

Size and Portability:

It’s worth noting that the horsepower rating can also affect the physical size and portability of an air compressor. Higher horsepower compressors tend to be larger and heavier due to the need for more substantial motors and components to generate the increased power output. This can impact the ease of transportation and maneuverability, especially in portable or mobile applications.

When selecting an air compressor, it is essential to consider the specific requirements of your intended applications. Factors such as desired air pressure, airflow, duty cycle, and portability should be taken into account. It’s important to choose an air compressor with a horsepower rating that aligns with the demands of the tools and equipment you plan to operate, ensuring optimal performance and efficiency.

Consulting the manufacturer’s specifications and guidelines can provide valuable information on how the horsepower rating of an air compressor corresponds to its capabilities and suitability for different tasks.

air compressor

Are there air compressors specifically designed for high-pressure applications?

Yes, there are air compressors specifically designed for high-pressure applications. These compressors are engineered to generate and deliver compressed air at significantly higher pressures than standard air compressors. Here are some key points about high-pressure air compressors:

1. Pressure Range: High-pressure air compressors are capable of producing compressed air at pressures typically ranging from 1000 to 5000 psi (pounds per square inch) or even higher. This is considerably higher than the typical range of 100 to 175 psi for standard air compressors.

2. Construction: High-pressure aircompressors feature robust construction and specialized components to withstand the higher pressures involved. They are designed with reinforced cylinders, pistons, valves, and seals that can handle the increased stress and prevent leaks or failures under high-pressure conditions.

3. Power: Generating high-pressure compressed air requires more power than standard compressors. High-pressure air compressors often have larger motors or engines to provide the necessary power to achieve the desired pressure levels.

4. Applications: High-pressure air compressors are utilized in various industries and applications where compressed air at elevated pressures is required. Some common applications include:

  • Industrial manufacturing processes that involve high-pressure air for operations such as air tools, pneumatic machinery, and equipment.
  • Gas and oil exploration and production, where high-pressure air is used for well drilling, well stimulation, and enhanced oil recovery techniques.
  • Scuba diving and underwater operations, where high-pressure air is used for breathing apparatus and underwater tools.
  • Aerospace and aviation industries, where high-pressure air is used for aircraft systems, testing, and pressurization.
  • Fire services and firefighting, where high-pressure air compressors are used to fill breathing air tanks for firefighters.

5. Safety Considerations: Working with high-pressure air requires adherence to strict safety protocols. Proper training, equipment, and maintenance are crucial to ensure the safe operation of high-pressure air compressors. It is important to follow manufacturer guidelines and industry standards for high-pressure applications.

When selecting a high-pressure air compressor, consider factors such as the desired pressure range, required flow rate, power source availability, and the specific application requirements. Consult with experts or manufacturers specializing in high-pressure compressed air systems to identify the most suitable compressor for your needs.

High-pressure air compressors offer the capability to meet the demands of specialized applications that require compressed air at elevated pressures. Their robust design and ability to deliver high-pressure air make them essential tools in various industries and sectors.

China high quality Auto Air Compressor Test Machine, Control Valve Tester   air compressor partsChina high quality Auto Air Compressor Test Machine, Control Valve Tester   air compressor parts
editor by CX 2023-10-01